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The fluid dynamic behaviour of a reactive chemical in a stream can be greatly
influenced by the presence of sorbing suspended particles. In this case, a kinetically
controlled mass transfer is established between sorbed and dissolved phases and
complex interactions emerge between fluid dynamical transport processes, sorption–
desorption kinetics and chemical reactions. These conditions often occur in rivers,
where both suspended sediment and reactive substances are frequently present. This
paper deals with the important case in which the chemical reactions are nonlinear
decay phenomena that often affect chemical or biological substances. A vertical
two-dimensional mathematical model is formulated to take into account advection,
turbulent diffusion, particle sedimentation, exchange kinetics between sorbed and
dissolved phases, and decay. The decay is modelled for the case in which two different
nonlinear decay reactions affect the dissolved and sorbed phases. The main result
of the work is to obtain analytically a one-dimensional differential model of the
vertically averaged concentration of the dissolved phase, this being conceptually
similar to the classical advection–dispersion–decay equation. However, in this case
we include the effects of (i) the kinetics with the phase sorbed by suspended particles
and (ii) the influence of the two different decay processes. For this purpose, the
multiple-scale method of homogenization is applied to the two-dimensional model.
The resultant one-dimensional differential model shows how suspended load and
decay phenomena affect the pollutant transport mechanisms to a great extent in a
non-intuitive way and that the links are nonlinear. Some quantitative results show
that these influences are, in general, not negligible.

1. Introduction
The study of transport processes in a stream has always been an important topic

in fluid mechanics, the reason being twofold. On one hand, these physical phenomena
demonstrate a remarkable variety of interesting behaviour patterns and therefore
lead to fascinating speculations. Some examples of these speculations are the role
of coherent structures (e.g. Nezu & Nakagawa 1993; Bernard & Rovelstad 1994;
Kaftori, Hetsroni & Banerjee 1995; Wang & Squires 1996; Rouson & Eaton 2001),
the interaction between a current and a mobile bed (e.g. Pan & Banerjee 1996; Niño
& Garcia 1996; Elliott & Brooks 1997), the effects of sorbing particles in suspension
(Ng 2000a, b; Ng & Yip 2001) and the influence of the storage zones and boundary
adsorption (e.g. Smith 1983, 1986; Czernuszenko & Rowinski 1997, Wörman 1998;
Choi, Harvey & Conklin 2000; Forsman, Johansson & Jonsson 2002). On the other
hand, there has always been a great interest in applications, because of the numerous
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real phenomena that involve transport processes in streams. Geophysical applications
(e.g. Fischer et al. 1979) or those in chemical and environmental engineering (e.g.
Rathbun 2000) are but a few examples.

Because of the wealth and complexity of this subject there are still several problems
that have to be solved. One of these problems, which is the subject of this work,
concerns the role of suspended sediment that is able to adsorb part of the transported
chemical substances which undergo decay processes. As will be shown, the interaction
between sediment, stream and reactive substance induces intriguing and non-trivial
fluid transport phenomena. The work considers rivers as an example. This is because
both the presence of solid materials in suspension and the presence of reactive
substances that interact with the suspended material are usual in rivers, if not the rule
(e.g. Graf 1984; Walling & Webb 1992). Nevertheless, the example of rivers is only
the most obvious and the results obtained are valid for any turbulent open channel
flow in which sorbing suspension particles are present.

Let us now describe the phenomenon under examination to show why it is inter-
esting not only from an application point of view but also from a conceptual point
of view. Sediment in suspension intervenes to a great extent in transport mechanisms
when the transported substance can be sorbed by the particles in suspension. When
this occurs, the transported chemical separates into an aqueous phase and a sorbed
phase with continuous exchanges which are regulated by the local concentration
gradients between the two phases themselves. The two phases follow different fluid
dynamic evolutions: the aqueous one undergoes advection, turbulent diffusion and
dispersion due to shear processes while the sorbed one, being connected to the sedi-
ment, also undergoes sedimentation. It therefore follows that an interaction between
three mechanisms is established: (i) the evolution of the aqueous phase, (ii) the trans-
port of the material in suspension and (iii) the exchange kinetics between the two
phases that act as a ‘bridge’ between their evolutions thus making one feel the pres-
ence of the other and vice versa. In this way, the problem of transport in the aqueous
phase is coupled to that of the sorbed phase. If a fourth mechanism is added, that is,
the reactive phenomena, the picture becomes even more interesting since an element
that is able to modify the concentrations in both the aqueous and sorbed phases
intervenes thus altering the exchanges between the two phases. Reactions are often
present in aqueous environments, whether of physical, chemical or biological origin
(e.g. Runkel et al. 1996; Schnoor 1996; Steefel & van Cappellen 1998; Manson &
Wallis 2000; Rathbum 2000). In order to avoid introducing other elements into an
already complex phenomenon, any influence of storage zones and sorbing boundaries
is neglected.

The aim of this work is to start from the two-dimensional model that describes
the four previously mentioned fluid dynamic and chemical mechanisms in a vertical
plane to obtain the equation that describes the spatial and temporal evolution of
the aqueous-phase concentration averaged vertically. In other words, the aim is to
obtain a one-dimensional model like Taylor’s classical one (1953, 1954) but which
now includes the complex interplay among turbulent diffusion, dispersion, advection,
decay and interaction with the suspended material. It is shown how the suspended
material and its interaction with the decay are able to change the advective–diffusive
Taylor-type model to a great extent, with important consequences for applications.
The analytical approach that we have followed is that of the homogenization method
(e.g. Mei, Auriault & Ng 1996; Cioranescu & Donato 1999). The coexistence of
mechanisms with different typical temporal scales makes this method suitable for
searching for a model to describe the entire phenomenon at greater scales.



Influence of suspended sediment on transport in streams 309

The problem has already been dealt with by Ng and Yip in the case of passive
substances, i.e. without including decay mechanisms, in three seminal works (Ng
2000a, b; Ng & Yip 2001), that have made a great contribution to the study of
the influence of sorption kinetics on transport processes. They have shown how the
inclusion of the suspended load introduces remarkable features. A new dispersive
term arises that is added to that introduced by Taylor, and which is connected to the
correlation between the vertical profile of the concentration of the suspended sediment
and the vertical profile of the velocity of the stream. This additional dispersion can
be of the same order of magnitude as that of Taylor and can therefore have serious
repercussions on the quantitative description of the evolution of a pollutant in a
stream. There is also an effect on the advection, with a reduction of the velocity
of the centroid of the chemical plume. The works by Ng have dealt both with the
case in which local equilibrium partitioning is assumed (Ng 2000b) and with the
case in which sorption kinetics exist (Ng 2000a; Ng & Yip 2001). In addition, they
also included (Ng 2000b; Ng & Yip 2001) or excluded (Ng 2000a) the presence of a
longitudinal evolution of the suspended sediment concentration.

This work continues along the path of Ng and investigates the role of the decay
processes, which introduce a further variety to the fluid dynamic behaviour of the
transported substance. The most general and realistic case (Schnoor 1996) is consid-
ered in which the decay is (i) nonlinear, (ii) different for the aqueous phase and for
the sorbed phase, and (iii) there is sorption kinetics between the two phases. It is also
assumed that there are negligible longitudinal variations of the suspended sediment
concentrations, that is, the open channel flow yields the same steady discharge of
suspended load. The differential equation that is found shows how great the differ-
ences are in comparison to the model that would be obtained simply by adding a
monophase decay term to the passive chemicals model. The interaction between the
sediment and the decay instead leads to numerous nonlinear terms, some of which
are able to strongly influence the chemical transport.

The work is organized as follows. The mathematical problem is presented in the next
section, where the basic hypotheses are discussed and the spatial and temporal scales
that are typical of each phenomenon are described. The homogenization method
is applied in the third section and the differential model that governs the depth
averaged concentration is deduced. This model is then discussed in the fourth section
and some quantitative results are shown. Finally, some conclusions are drawn in the
fifth section.

2. Statement of the problem
2.1. Mathematical model

Let us consider a two-dimensional, steady, uniform turbulent channel flow with a
mild slope. A reference system with the x-coordinate along the channel and the
z-coordinate vertical upwards is introduced (see figure 1). The stream has depth-
averaged velocity Ub, depth H , time-averaged local velocity profile u = u(z), and
yields a steady uniform suspended load. Let us suppose that the solid particles
behave like fluid particles, except that they tend to settle with a fall velocity wf . Low
sediment concentration is assumed so that sediment does not affect the flow to any
extent. Consequently, sediment concentrations of about 10−1–10−2 Kg m−3, which are
quite common in rivers (e.g. Graf 1984; Walling & Webb 1992), are considered. The
coordinate axes are assumed to coincide with the principal directions of the tensor
of turbulent diffusion (e.g. Sumer 1974; Fischer et al. 1979) and the longitudinal and
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z
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Flow u = u (z)
ζ = ζ (z)

Figure 1. Diagram of the stream. The qualitative profiles of the suspended sediment concentration
and the local averaged velocity are indicated with continuous and dot-dashed lines, respectively.

vertical eddy diffusion coefficients are denoted as Exx and Ezz , respectively. The same
longitudinal and vertical eddy diffusion coefficients are assumed for both sediment
and fluid particles.

Let us hypothesize that the settling and turbulent diffusive flux of the particles are
in dynamic equilibrium throughout the depth. Therefore

Ezz(z)
∂ζ

∂z
+ wfζ = 0, (2.1)

where ζ = ζ(z) is the suspended sediment concentration and wf can be taken to
be independent of ζ for the sediment concentrations considered here (Jansen 1979).
Therefore, the following equilibrium vertical profile is established for the suspended
sediment concentration:

ζ(z) = ζ0 exp

(
−
∫ z

0

wf

Ezz(z′)
dz′
)
, (2.2)

in which ζ0 is a reference sediment concentration at the bed level z = 0.
Before continuing with the description of the problem, it is important to recall

an aspect that is a basis of this work. The physical domain of the problem is dis-
continuous, as it is made up of a set of fluid and solid (porous) particles. In order
to write down the differential model of the transport phenomena, a macroscopic
level of description is adopted, obtained using the so-called continuum approach.
This approach is the same as that used to pass from the molecular level of descrip-
tion of a fluid to a continuous description, or used to model the flow in a porous
medium (e.g. Bear 1979; Mei et al. 1996; see also the hierarchical systems (Cushman
1990)). The approach consists of three steps. First, a representative elementary vol-
ume is chosen that is sufficiently large to always contain solid particles. Secondly,
upscaling by one level is done in order to obtain values of concentration, in the
aqueous and sorbed phases, averaged on the entire elementary volume. Thirdly, the
average values are assigned to the centroid of the representative volume. In this
way, macroscopic variables are obtained that are differentiable functions of the space
coordinates. The balance equations that are written in this paper already refer to
a second level of upscaling, which permitted us to formulate the dependent vari-
ables, namely the sediment or chemical concentrations, in terms of macroscopic
variables.

Now let us consider that a reactive pollutant is present in the stream and the
suspended load is able to give rise to sorption reactions. In this case several fluid
dynamic and chemical (or biological) actions determine the fate of the chemical. These
actions are summarized in figure 2. First of all, the chemical is partitioned into a
dissolved and a sorbed phase. If local volume-averaged concentrations are considered
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Figure 2. Diagram of the fluid dynamic and chemodynamic mechanisms that were taken into
consideration.

(as mentioned in the previous paragraph), the total mass of the chemical per bulk
volume, Ctot = Ctot(x, z; t), is

Ctot = C + ζCs, (2.3)

where C = C(x, z; t) is the mass of the dissolved phase per volume of water,
Cs = Cs(x, z; t) is the mass of the sorbed phase per mass of solid load and t is
the time. The units of C are Kg m−3, while those of Cs are Kg (of chemical)/Kg (of
sediment).

Soluble chemicals can sorb onto particulate suspended material for different reasons,
including physical adsorption, chemisorption and partitioning (e.g. Schnoor 1996).
Whatever its chemical origin, it is possible to define – at the isothermal dynamical
equilibrium of adsorption–desorption mechanisms – a sorption partition coefficient
Kd = Cs/C (measured in m3 Kg−1) that relates the concentrations of the chemical
in the sorbed and dissolved phases. This coefficient usually depends on C and Cs,
but if these are not large, Kd can be assumed to be constant for fixed chemical
and sediment characteristics (Karichoff, Brown & Scott 1979; O’Connor & Connolly
1980; Schweich & Sardin 1981; Schnoor 1996). This condition is hereinafter assumed.

In order to deal with the cases in which the sorbed phase plays a significant role in
the transport processes, let us assume that the dissolved and sorbed concentrations
at equilibrium are of the same order of magnitude, that is

Kdζ0 = O(1), (2.4)

where ζ0 is a reference sediment concentration and Kdζ0 is the bulk solid–water
distribution ratio. This condition occurs in various cases (e.g. Karichoff et al. 1979;
Rathbun 2000; Ng & Yip 2001) and, in particular, when the chemical is sufficiently
hydrophobic, the sediment is fine (silt or clay), and its concentration and fractional
mass of organic carbon are significant. Values of the sorption partition coefficient of
about 101–102 m3 Kg−1 are considered here.

The evolution of both the aqueous and sorbed phases is governed by several fluid
dynamic mechanisms. In order to model these mechanisms, the following hypotheses
are made: (i) the molecular diffusion is negligible compared to the turbulent diffusion,
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(ii) sufficient time has passed from the chemical input and the chemical is well
distributed in a vertical section, and (iii) the flux of the sorbate phase is equal
to the sorbate concentration times the corresponding sediment flux. Under these
hypotheses, the fluid dynamic evolution of the two phases is regulated by advection,
vertical turbulent diffusion, longitudinal turbulent diffusion, and sedimentation. This
last process affects only the sorbed phase (see figure 2). In figure 2 it is shown how
the interaction between the vertical turbulent diffusion and the non-uniform velocity
profile gives rise to the dispersion of the contaminant. This aspect is fundamental
for sufficiently long times and it is important to select the scales of interest in the
following subsection.

By modelling the fluid dynamic processes according to the advection–diffusion
equation (Sumer 1974; Fischer et al. 1979), the mathematical model that governs the
transport of the chemical in the domain 0 < z < H is

∂Ctot

∂t
+ u

∂Ctot

∂x
− wf ∂Csζ

∂z
=

∂

∂x

(
Exx

∂Ctot

∂x

)
+

∂

∂z

(
Ezz

∂Ctot

∂z

)
, (2.5)

which, using condition (2.1), becomes (see also Ng 2000a, b)

∂Ctot

∂t
+ u

∂Ctot

∂x
=

∂

∂x

(
Exx

∂Ctot

∂x

)
+

∂

∂z

[
Ezz

(
∂C

∂z
+ ζ

∂Cs

∂z

)]
. (2.6)

Apart from the sorption–desorption kinetics, let us suppose that the substance is
also subjected to a decay process. Many chemical or biological processes give rise to
decay which can therefore be considered one of the most common and important
examples of reaction in an aqueous environment (e.g. Schnoor 1996; Rathbum 2000).
The general case in which the decay is nonlinear and different for the dissolved and
sorbed phases is studied (see Schnoor 1996, pp. 103–106). The corresponding reaction
rates, R and Rs, can be modelled as power laws (Thibodeaux 1996; Schwarzenbach
et al. 1993):

R = −λCn, Rs = −λsCm
s , (2.7)

where the coefficients λ and λs are the decay rate constants for the dissolved and sorbed
phases, respectively (their units are (Kg m−3)1−n s−1 and s−1). Values of exponents n
and m greater than or equal to one are considered, in order to capture the common
chemodynamic nonlinearities (Schwarzenbach et al. 1993; Schnoor 1996; Brezonik
1996).

Regarding the values of the coefficients λ and λs, it is necessary to note that
the reactivity of the substances can lead to a significant interaction with other
transport processes – without dominating or being negligible to other fluid dynamic
mechanisms – only if the time scale of the decay is comparable to the characteristic
time of the advective phenomena, which, in rivers, is usually of the order of days. Let
us choose the half-life time of the chemicals, t1/2, as the characteristic scale of decay;
for the reactions modelled by equations (2.7) this is equal to

t1/2 =
C1−n
t=0 (2n−1 − 1)

λ(n− 1)
, t1/2 =

C1−m
st=0

(2m−1 − 1)

λs(m− 1)
, (2.8)

respectively, with Ct=0 or Cst=0
being the respective initial condition. Therefore λ and

λs have to be chosen equal to

λ =
C1−n
t=0 (2n−1 − 1)

t1/2(n− 1)
, λs =

C1−m
st=0

(2m−1 − 1)

t1/2(m− 1)
, (2.9)



Influence of suspended sediment on transport in streams 313

where t1/2 = O(L/Ub) is of the order of 105 s, with L being the typical length scale
of advection. Equations (2.9) show how the values of the decay rates depend to a
great extent on the nonlinearity and initial conditions. In particular, λ and λs decrease
with an increase of the nonlinearity and an increase of the initial concentration. The
latter is not influential only in the case of linear decay when the rates are equal to
(ln 2)/t1/2, from which one determines that λ and λs are O(10−6 s−1).

Finally, when the decay processes is included in the model (2.6), the mathematical
model that governs the transport and fate of the chemical is

∂Ctot

∂t
+ u

∂Ctot

∂x

=
∂

∂x

(
Exx

∂Ctot

∂x

)
+

∂

∂z

[
Ezz

(
∂C

∂z
+ ζ

∂Cs

∂z

)]
− (λCn + ζλsC

m
s ). (2.10)

The concentration of the sorbed phase, Cs, is controlled by (i) the kinetics of the
sorption exchange with the aqueous phase and (ii) the decay reaction in the sorbed
phase. Assuming linear first-order kinetics (e.g. Schweich & Sardin 1981; Cvetkovic
& Dagan 1994; Schnoor 1996), the sorbate concentration evolution can be described
by the following model in the domain 0 < z < H:

∂Cs

∂t
= kd(KdC − Cs)− λsCm

s , (2.11)

where the desorption rate constant, kd, modulates the strength of the kinetic sorptive
exchange. To make (2.11) valid, we assume that λsdp/Deff � 1, where dp is the particle
diameter and Deff is the effective aggregate diffusion coefficient (Schwarzenbach et al.
1993).

The boundary conditions are defined by

Ezz

(
∂C

∂z
+ ζ

∂Cs

∂z

)
= 0 at z = 0, H, (2.12)

which state that there is zero flux in the vertical direction through the free surface
and through the bed. Equations (2.10)–(2.12), together with sediment profile (2.2) and
the initial conditions, define the mathematical problem that describes the interaction
between the advective–diffusion–decay process and the suspended load.

2.2. Typical scales

The multiple-scale method of homogenization is used in the following to obtain the
one-dimensional model that describes the evolution of the depth-averaged chemical
concentration. This method is effective when there are two or more distinct spatial or
temporal scales in the phenomenon. It allows one to deduce the effective equations
on the larger scale through a rational process of averaging (Mei et al. 1996). The
first step is to assess the physical scalings of the terms that are present in the model
(2.10)–(2.12) to evaluate the number of typical scales in the process. For details on
the advective, diffusive and dispersive terms, reference can be made to the works by
Ng (2000b) and Ng & Yip (2001).

Once a steady vertical profile of the suspended sediment has been assigned, five
mechanisms intervene in the entire transport process: the advection, the vertical and
longitudinal turbulent diffusions, the sorption kinetics and the decay. Moreover, the
combined action of the non-uniform advection and the vertical turbulent diffusion
gives rise to dispersion. As this paper focuses on the transport of the chemical over a
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long period of time after discharge, dispersion plays a key role in the upscaling, for
two reasons. First, dispersion introduces its own typical longitudinal scale L that is
much longer than the spatial scale (usually the flow depth H) which is characteristic
of the vertical diffusion (e.g. Fischer et al. 1979). Secondly, it is well known (e.g.
Sumer 1974; Fischer et al. 1979) that over a long period of time the dispersive
process is more dominant than the longitudinal turbulent diffusion in controlling
the longitudinal spreading of the chemical. Consequently, the longitudinal turbulent
diffusion can be neglected with respect to the dispersion.

For a steady two-dimensional turbulent open-channel flow, the following expres-
sions are valid (Elder 1959; Fischer 1973):

Exx = Ezz = 0.07u∗H, D = 5.86u∗H, (2.13a, b)

where the overbar denotes the depth average, D is the dispersion coefficient, and u?
is the friction velocity. The ratio ε ≡ Ezz/D = O(10−2) � 1 can therefore be chosen
as the perturbative parameter for the application of the homogenization method and
as the reference term to evaluate the order of magnitude of the individual terms in
the model (2.10)–(2.12).

From the previous relationships it follows that

∂

∂x

(
Exx

∂C

∂x

)/
∂

∂x

(
D
∂C

∂x

)
= O(ε). (2.14)

Recalling that Aris (1956) showed that the coefficients due to the turbulent diffusion
and the turbulent dispersion are additive, (2.14) justifies the possibility of neglecting
diffusion with respect to dispersion.

Let us assume that the vertical diffusion is two orders of magnitude greater than
the longitudinal dispersion and one order of magnitude greater than advection (Ng
& Yip 2001), that is

∂

∂x

(
D
∂C

∂x

)/
∂

∂z

(
Ezz

∂C

∂z

)
= O(ε2), (2.15)

u
∂C

∂x

/
∂

∂z

(
Ezz

∂C

∂z

)
= O(ε). (2.16)

From relationship (2.15) and using (2.14), it follows that

∂

∂x

(
Exx

∂C

∂x

)/
∂

∂z

(
Ezz

∂C

∂z

)
= O(ε3), (2.17)

and, from (2.15), one obtains

H

L
= O(ε3/2). (2.18)

Therefore, if ε ≡ 10−2, one obtains H/L = O(10−3), which is a reasonable ratio in
a river, where H is of the order of metres and L of the order of kilometres.

Assumption (2.16) and ratio (2.18) allow one to obtain an estimate of the Péclet
number, which indicates the ratio of advection to vertical diffusion. According to the
previous hypotheses one obtains

Pe ≡ UbH

Ezz

= O

(
Ub

0.07u?

)
= O(ε−1/2). (2.19)

The ratio of the desorption rate to the vertical diffusion is equal to the Damköhler
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number Da ≡ kdH
2/Ezz . By modelling the sorption kinetics as rate-limiting diffu-

sion into a spherical particle (Wu & Gschwend 1986; Schwarzenbach et al. 1993;
Ng 2000a) and by assuming the effective aggregate diffusion coefficient, Deff , of
the order 10−8 cm2 s−1 (Ng & Yip 2001), the desorption rate can be estimated as
kd = O(10−4 s−1). If the typical values H ≈ 5 m and u∗ ≈ 0.01 m s−1 are used, the
Damköhler number is of the order of unity.

Regarding the decay terms, let us consider the case of the dissolved phase and let
us study the ratio

λCn

u∂C/∂x
=
C1−n
t=0 (2n−1 − 1)

T1/2(n− 1)

Cn

u∂C/∂x
, (2.20)

where relationship (2.9) has been used. If the following dimensionless quantities, which
are based on the previous scaling estimates, are introduced:

x̂ =
x

L
, û =

u

Ub

, Ĉ =
C

Ct=0

, (2.21)

and taking into consideration that t1/2 = O(L/Ub), one finds that ratio (2.20) is O(ε0).
The same result can be obtained for the concentration of the sorbed phase, Cs.

On the basis of these orders of magnitude, equations (2.10) and (2.11) give

ε
∂Ctot

∂t
+ εu

∂Ctot

∂x
= ε3 ∂

∂x

(
Exx

∂Ctot

∂x

)
+
∂

∂z

[
Ezz

(
∂C

∂z
+ ζ

∂Cs

∂z

)]
− ε(λCn + ζλsC

m
s ), (2.22)

ε
∂Cs

∂t
= kd(KdC − Cs)− ελsCm

s , (2.23)

where the ordering parameters are kept for the identification that is necessary in the
next section.

It is important to bear in mind that the dispersion – which is ‘hidden’ in the
interaction between the advective and vertical turbulent diffusion terms – has an
ordering parameter equal to ε2. As we are dealing with long time scales in which the
only really dominant process in longitudinal spreading is dispersion (e.g. Sumer 1974;
Fischer et al. 1979; Ng 2000a), the upscaling should be made up to the order ε2.

From a temporal point of view, it is possible to observe the existence of three
different time scales that are fundamental in the whole process. The first, that of
the vertical diffusion, is equal to T0 = H2/Ezz . The second, which is typical of
the advection and decay along the channel, is equal to T1 = L/Ub, with L being
the characteristic travel distance. Finally, the third one for the dispersion spreading
phenomena across L, is equal to T2 = L2/D. On the basis of the previously estimated
magnitudes, one obtains

H2

Ezz

:
L

Ub

:
L2

D
= T0 : T1 : T2 = 1 :

1

ε
:

1

ε2
. (2.24)

These differences in the order of magnitude are of fundamental importance for this
work. As we are focusing on longitudinal transport phenomena, it is possible not to
take into account the variations in concentrations associated to the vertical diffusion
and therefore only scales T1 and T2 are important in the present study. This allows
the introduction of the two multiple time coordinates t1 = t and t2 = εt, and then
the application of the homogenization method, with respect to time, as described



316 R. Revelli and L. Ridolfi

in the following section. Focusing on times much longer than T0 also justifies the
possibility of modelling the transport and decay phenomena using a one-dimensional
longitudinal model (e.g. Chatwin 1970; Sullivan 1971; Fischet et al. 1979).

3. Depth-averaged transport equation
Let us expand the dependent variables C and Cs in power series of the perturbative

parameter ε:

(C,Cs) = (C0, Cs0) + ε(C1, Cs1) + ε2(C2, Cs2) + · · · . (3.1)

Consequently, the nonlinear decay terms in (2.22) and (2.23) can also be expanded
in power series so that

ελCn = ελ(C0 + εC1 + ε2C2 + · · ·)n ≈ ελCn
0 + ε2nλCn−1

0 C1 + O(ε3), (3.2)

εζλsC
m
s = εζλs(Cs0 + εCs1 + ε2Cs2 + · · ·)m ≈ εζλsCm

s0 + ε2mζλsC
m−1
s0 Cs1 + O(ε3), (3.3)

ελsC
m
s = ελs(Cs0 + εCs1 + ε2Cs2 + · · ·)m ≈ ελsCm

s0 + ε2mλsC
m−1
s0 Cs1 + O(ε3). (3.4)

Because of the introduction of the two time coordinates t1 and t2, the time derivative
is transformed, using the chain rule (Nayfeh 1973), according to

∂

∂t
→ ∂

∂t1
+ ε

∂

∂t2
. (3.5)

The substitution of (3.1)–(3.5) into equations (2.22)–(2.23) therefore allows one to
make an analysis according to the different powers of ε. At O(ε0), the solute decay
terms do not intervene and the problem is homogeneous. Equation (2.22) becomes

∂

∂z

[
Ezz

(
∂C0

∂z
+ ζ

∂Cs0

∂z

)]
= 0, 0 < z < H, (3.6)

with the boundary condition

Ezz

(
∂C0

∂z
+ ζ

∂Cs0

∂z

)
= 0, z = 0, H, (3.7)

while equation (2.23) gives

kd(KdC0 − Cs0) = 0. (3.8)

From these relationships it is possible to immediately deduce that the zeroth order
of the solute concentrations is independent of z so that

Cs0 = KdC0, (3.9)

which gives

Ctot0 = C0 + ζCs0 = RC0, (3.10)

where R(z) = (1 +Kdζ(z)) is the retardation factor (Gupta & Cvetkovic 2000; Ng
2000a).

At O(ε), by substituting (3.10) and (3.9) in (2.22), one obtains

R
∂C0

∂t1
+ Ru

∂C0

∂x
=

∂

∂z

[
Ezz

(
∂C1

∂z
+ ζ

∂Cs1

∂z

)]
− λCn

0 − ζλsKm
d C

m
0 . (3.11)

By taking the depth average of (3.11) and using the zero-flux boundary condition,
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the first-order effective transport equation is obtained:

∂C0

∂t1
+ ue

∂C0

∂x
+ λ∗Cn

0 + λ∗∗Cm
0 = 0, (3.12)

where ue = Ru/R is an effective advective velocity and λ∗ = λ/R and λ∗∗ = λsK
m
d ζ/R

are two effective nonlinear decay coefficients.
At O(ε) one obtains from (2.23)

∂Cs0

∂t1
= kdKdC1 − kCs1 − λsCm

s0, (3.13)

from which, with (3.9) and by differentiating with respect to z, one obtains

∂Cs1

∂z
= Kd

∂C1

∂z
. (3.14)

If (3.14) is substituted into the right-hand side of (3.11) and the derivative ∂C0/∂t1
is eliminated using (3.11) and (3.12), the following equation is also found:

∂

∂z

[
EzzR

∂C1

∂z

]
= R(u− ue)∂C0

∂x
+ λ∗Kd(ζ − ζ)Cn

0 − λ∗∗

ζ
(ζ − ζ)Cm

0 , (3.15)

where condition (3.10) is also retained.
The structure of (3.15) suggests the substitution

C1 = N(z)
∂C0

∂x
+M ′(z)Cn

0 +M ′′(z)Cm
0 , (3.16)

where N(z), M ′(z) and M ′′(z) are governed by the following three problems:
R(u− ue) =

d

dz

[
EzzR

dN

dz

]
, 0 < z < H

dN

dz
= 0, z = 0, H,

(3.17)


λ∗Kd(ζ − ζ) =

d

dz

[
EzzR

dM ′

dz

]
, 0 < z < H

dM ′

dz
= 0, z = 0, H,

(3.18)

and 
−λ∗∗ (ζ − ζ)

ζ
=

d

dz

[
EzzR

dM ′′

dz

]
, 0 < z < H

dM ′′

dz
= 0, z = 0, H,

(3.19)

whose solutions are, respectively

N(z) =

∫ z

0

1

REzz

∫ z′

0

R(u− ue) dz′′ dz′ +N(0), (3.20)

M ′(z) = λ∗Kd

∫ z

0

1

REzz

∫ z′

0

(ζ − ζ) dz′′ dz′ +M ′(0), (3.21)

M ′′(z) = −λ∗∗
∫ z

0

1

REzz

∫ z′

0

(ζ − ζ)
ζ

dz′′ dz′ +M ′′(0). (3.22)
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Without loss of generality, we take C1 = 0 in such a way that the vertical average
of C is equal to C0 with an error of no greater than O(ε2). From this, using (3.16)
and (3.20)–(3.22), it is possible to deduce

N(0) = N(0) = −
∫ z

0

1

REzz

∫ z′

0

R(u− ue) dz′′ dz′, (3.23)

M ′(0) = M ′(0) = −λ∗Kd

∫ z

0

1

REzz

∫ z′

0

(ζ − ζ) dz′′ dz′ (3.24)

M ′′(0) = M ′′(0) = − λ∗∗

λ∗ζKd

M ′(0). (3.25)

By taking into account relationships (3.9), (3.12) and (3.16), equation (3.13) gives

Cs1 = δ
∂C0

∂x
+ γ′Cn

0 + γ′′Cm
0 (3.26)

with

δ = Kd

(
N +

ue

kd

)
, γ′ = Kd

(
M ′ +

λ∗

kd

)
, γ′′ = Kd

(
M ′′ − λ∗∗

kdKdζ

)
. (3.27a–c)

Therefore, the O(ε) total concentration can now be written as

Ctot1 = C1 + ζCs1 = (N + ζδ)
∂C0

∂x
+ (M ′ + ζγ′)Cn

0 + (M ′′ + ζγ′′)Cm
0 . (3.28)

At O(ε2), by substituting (3.10) and (3.28) in (2.22) and by averaging over the depth,
the following equation is found:

∂C0

∂t2
− D∗ ∂

2C0

∂x2
+ u∗

∂Cn
0

∂x
+ u∗∗

∂Cm
0

∂x
+ λ′C2n−1

0 + λ′′C2m−1
0 + λ′′′Cn+m−1

0 = 0, (3.29)

where

D∗ = −N(u− ue)R
R

− ueKd

kd

(u− ue)ζ
R

(3.30)

is an effective dispersion coefficient, while

u∗ =
R(u− ue)M ′

R
+
λ∗Kd

kdR
[kdN(ζ − ζ) + ζ(u− 2ue)], (3.31)

u∗∗ =
R(u− ue)M ′′

R
− λ∗∗

ζkdR
[kdN(ζ − ζ)− ζ(u− 2ue)] (3.32)

are two effective coefficients for two pseudo-advective (nonlinear) terms, and

λ′ =
nλ∗Kd

R
(ζ − ζ)M ′ − nKd(λ

∗)2

kdR
ζ, (3.33)

λ′′ =
mλ∗∗

ζ R
(ζ − ζ)M ′′ − m(λ∗∗)2

ζkdKdR
, (3.34)

λ′′′ =
λ∗

R
M ′′(nR − mR) +

λ∗∗

ζ R
M ′(mζR − nRζ) +

λ∗λ∗∗

kdR
[m(R + 1)− nζKd] (3.35)

are the coefficients of three nonlinear decay terms. The two relationship (3.24) and
(3.25) are necessary for the computation of the first two terms of (3.35). Only when
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the substance is not reactive (Ng 2000a) or the decay is linear are the N(0), M ′(0)
and M ′′(0) integration constants not influential and therefore do not need to be
determined.

After some re-arrangement and by integrating by parts, it is possible to obtain

D∗ =
1

R
=0=2

1 − Kdue

kdR
2
(ζ − ζ)(u−Ub), (3.36)

u∗ =
λ∗Kd

kdR
(ζ(u− 2ue)− 2kd=0=1=2), u∗∗ = − λ∗∗

λ∗Kdζ
u∗, (3.37a, b)

λ′ = −n (λ∗Kd)
2

R

(
=0=2

2 +
ζ

kdKd

)
, λ′′ =

m

n

(
λ∗∗

λ∗Kdζ

)2

λ′, (3.38a, b)

λ′′′ =
λ∗λ∗∗

ζR

[
=0=2=3 +Kd=0=2=4 − 2mζ

kd
+ (m− n)

(
=5(1−K2

d ζ
2
)− ζ2Kd

kd

)]
,

(3.39)

in which

=0 = (REzz)
−1, =1 =

∫ z

0

R(u− ue) dz′, =2 =

∫ z

0

(ζ − ζ) dz′, (3.40)

=3 =

∫ z

0

(nR − mR) dz′, =4 =

∫ z

0

(nRζ − mζR) dz′, =5 =

∫ z

0

=0=2. (3.41)

Finally, by introducing the above relationships into (3.12) and (3.29) and by recalling
(3.1) and (3.5), one obtains

∂C0

∂t
− D∗ ∂

2C0

∂x2
+ ue

∂C0

∂x
+ u∗

∂Cn
0

∂x
+ u∗∗

∂Cm
0

∂x

+λ∗Cn
0 + λ∗∗Cm

0 + λ′C2n−1
0 + λ′′′Cm+n−1

0 + λ′′C2m−1
0 = 0. (3.42)

This one-dimensional nonlinear partial differential equation models the evolution
of the depth-averaged concentration in the dissolved phase of a nonlinearly decaying
chemical up to O(ε). Equation (3.42) clearly shows how the combined action of
the presence of the suspended sediment and of the decay changes the transport
mechanisms to a great extent compared to the clear fluid case. It can also be noted,
recalling (3.9), that the depth-average behaviour of the sorbed phase can easily be
deduced once the evolution of C0 is defined.

4. Discussion
In order to discuss the complex links between the transport mechanisms, suspended

load and decay described by model (3.42) and to understand the quantitative influ-
ence of each term, it is necessary to define the vertical profiles of velocity, u(z), and
suspended sediment concentration, ζ(z), to be able to explicitly evaluate coefficients
(3.36)–(3.39). Several profiles of varying refinement have been proposed in the litera-
ture (e.g. Vanoni 1975; Graf 1984). The laws that have been chosen here are simple
and are generally accepted as describing real conditions. They enable the analytical
evaluation of the integrals in the definitions of the coefficients. It is however rea-
sonable to consider that the conceptual aspects of the following discussion do not
depend on the particular choice of the profiles.
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Let us consider the following velocity distribution, as proposed by Engelund (1970),
for turbulent channel flows on a rough bed:

u(z)

u?
=

1

κ
ln

(
H

εs

)
+ 8.5− 2.63

κ
+
u?

Em

(
z − z2

2H

)
, (4.1)

where εs is the bottom roughness, κ = 0.4 is the von Kármán constant and Em is
the eddy viscosity, which is assumed constant throughout the depth. The classical
relationship (Fischet et al. 1979)

Em = 0.19κu?H (4.2)

has been chosen for the eddy viscosity and the same constant value is also assumed
for the two eddy diffusivities Exx and Ezz . The constant profile for the vertical eddy
diffusivity is in general a weak approximation; however it does not intervene in the
most important decay terms (see § 4.3) and has no influence on the main topic of
this paper. Corresponding to condition (4.2), the suspended sediment concentration
is assumed to decrease exponentially upwards according to the law (Vanoni 1975)

ζ = ζ0 exp
(
−α z

H

)
, (4.3)

where α ≡ wfH/Ez = 5.26wf/κu? is the suspension number and ζ0 = ζ(z = 0), the
latter being used as a reference concentration in the bulk solid–water distribution
ratio, Kdζ0. As the fall velocity of small particles of sediment usually ranges from 0.1
to 10 mm s−1 (Graf 1984) while u? = O(0.01 m s−1), realistic values of α can be found
in the [10−1, 101] interval. These same laws have also been used by Ng (2000a) for
the vertical profiles of velocity, eddy diffusivity and sediment concentration, and these
laws allow useful comparisons with the case without decay that he investigated.

The two quantities α and Kdζ0 play a fundamental role in modulating the influence
of the suspended load on the chemical dynamics. The suspension number focuses on
the shape of the vertical distribution of the sediment: the higher α (e.g. heavy particle
or low friction velocity), the more the vertical profile of the sediment concentration
moves away from uniformity, while the opposite occurs when the suspension number
is low. As the influence of the sediment on the transport phenomena depends on
the non-uniformity of the sediment concentration profile (see (3.36)–(3.39) and the
definition of ue), it follows that α contributes to a great extent to regulate this influence.
In the limit α→ 0, the sediment is uniformly distributed on the vertical section and

(u∗, u∗∗, λ′, λ′′, λ′′′)→ 0, ue → Ub, D∗ → 0.82D, (4.4)

that is, advection and dispersion of the chemical occur as in the absence of sediment
whose influence in (3.42) is still included in the decay terms λ∗Cn

0 and λ∗∗Cm
0 (the

numerical coefficient of D in (4.4) has no particular physical meaning and only
depends on the choice of the velocity and eddy viscosity profiles).

The bulk solid–water distribution ratio indicates how the chemical is distributed
between the solid and aqueous phases. The higher this ratio, the more important is
the role of sediment in the chemical dispersion. On the other hand, when Kdζ0 → 0,
the sediment transport loses influence and the transport of the pure dissolved phase
is recovered.

The general model (3.42) includes the two sub-cases that correspond to passive
chemicals (i.e. no decay, studied by Ng 2000a) and to linear decay. For the sake of
clarity and in order to underline the role of nonlinearities, let us explain these two
simpler cases separately.
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4.1. Passive chemicals

In this case, it is sufficient to put λ = λs = 0. Consequently, λ∗ = λ∗∗ = 0 and, from
(3.36)–(3.39), one can deduce u∗ = u∗∗ = λ′ = λ′′ = λ′′′ = 0 which, when introduced
into (3.42), gives

∂C0

∂t
− D∗ ∂

2C0

∂x2
+ ue

∂C0

∂x
= 0. (4.5)

This model coincides with the one obtained by Ng (2000a) in his noteworthy
analysis. This model sheds light on some fundamental aspects of the role played by
suspended sediment in transport mechanisms, and these aspects persist, in the second
and third terms of (3.42), even when the chemical (or biological) reactivity is taken
into account. It is important to recall how both the advection velocity, ue, and the
dispersion coefficient, D∗, are greatly influenced by the sediment: the advection is
retarded while the dispersion is enhanced by a new dispersion coefficient which is
proportional to the covariance between the velocity and sediment concentration (see
equation (3.36)). Figure (3a, b) reports an example of the links that can be found
between the advection, dispersion and sediment characteristics. These figures refer
to the case of H/εs = 1000 and kdH/u? = 0.2 (the same as described by Ng 2000a)
and show how the influence of sediment is usually not negligible and becomes more
evident with an increase of the suspension number and of the bulk solid–water
distribution ratio: the differences for advection, compared to the clear water case, can
reach 3–4%, while the dispersion coefficient, D∗, can even be 5–10 times that of the
classical Taylor dispersion coefficient. One should also notice that both ue and D∗ are
very sensitive to the type of profile that is chosen. Some tests (not shown here) that
have been carried out with some other common velocity and diffusivity profiles (e.g.
the logarithmic law and the parabolic profile for u(z) and Ezz(z), respectively (Vanoni
1975; Ng & Yip 2001)) have shown that this dependence can be of the same order
of magnitude as that of Kdζ0.

4.2. Linear decay

This case corresponds to placing m = n = 1, which leads to the model

∂C0

∂t
− D∗ ∂

2C0

∂x2
+ (ue + u∗ + u∗∗)

∂C0

∂x
+ (λ∗ + λ∗∗ + λ′ + λ′′ + λ′′′)C0 = 0. (4.6)

In real cases, u∗ and u∗∗ and λ′, λ′′ and λ′′′ can be neglected with respect to ue and
λ∗ and λ∗∗; consequently in the case of profiles (4.1) and (4.3), the coefficient of the
reaction term in (4.6) becomes

λe = λ∗ + λ∗∗ =
eα α+ (eα − 1)ωKd ζ0

eα α+ (eα − 1)Kd ζ0

λ, (4.7)

with ω = λs/λ. Figure 4(a–c) shows that λe is usually different from the decay rate
for the dissolved phase λ. When ω < 1, i.e. for a reaction rate constant for the sorbed
phase that is greater than the corresponding value for the dissolved phase, the value
of the effective reaction coefficient is greater than the decay coefficient in the case
without sediment or with λ = λs. Instead, when ω < 1 then λe < λ. The difference,
with respect to the case without sediment, grows with Kdζ0 and can reach a value of
about ±20–40% if the bulk solid–water distribution ratio is sufficiently high. On the
other hand, the difference decreases with α.
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Figure 3. Case of passive chemicals (after Ng 2000a). Effective dispersion coefficient (a) and
advection velocity (b) versus suspension number and bulk solid–water distribution ratio. α = 0.1,
continuous line; α = 1, dotted line; α = 0.1, dashed line.

4.3. Nonlinear decay

When the case of nonlinear decay is considered, model (3.42) shows the complexity of
the links between the sorbed phase, dissolved phase and fluid dynamic mechanisms
that regulate the evolution of the chemical and suspended load, and several nonlinear
terms appear. These terms are important, from a conceptual point of view, as they
show the variety of links between the decay and the other transport mechanisms;
however if the coefficients of nonlinear terms are evaluated for realistic cases of
nonlinear decay (i.e. n, m = O(1)) the following is encountered:(

u∗
∂Cn

0

∂x
, u∗∗

∂Cm
0

∂x

)
� ue

∂C0

∂x
, (4.8)

(λ′C2n−1
0 , λ′′C2m−1

0 , λ′′′Cn+m−1
0 )� (λ∗Cn

0 , λ
∗∗Cm

0 ). (4.9)

As a consequence the fourth, fifth and the last three terms of equation (3.42) can
usually be neglected for application purposes and the model can be approximated as

∂C0

∂t
+ ue

∂C0

∂x
− D∗ ∂

2C0

∂x2
+ λ∗Cn

0 + λ∗∗Cm
0 = 0. (4.10)

Both the advective term and the dispersive term are the same as those that
were present in the model formulated by Ng (2000a) and the same considerations
that have already for the transport of passive chemicals are therefore valid. The
difference concerns the decay terms. Because of the interaction between the nonlinear
decay and the sorption–desorption kinetics the model, even in its approximated
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Figure 4. Case of linear decay. Examples of the influence of the suspension number, bulk solid–water
distribution ratio and ratio between the decay rate constants on the effective decay λe. (a) α = 0.1;
(b) α = 1; (c) α = 10.

form (4.10), does not have a λCn
0 term, but the terms that account for decay are

more complex and non-intuitive. The term λ∗∗Cm
0 makes the nonlinearity that is

present in the decay in the sorbed phase appear explicitly. Only in the case in
which the decay has the same degree of nonlinearity in both phases (i.e. m = n) does
(λ∗ + λ∗∗)→ λ and, therefore, the decay terms in the model coincide with λCn

0 , that
is, the decay process of the dissolved phase is not influenced by, nor does it influence,
the interactions between the suspended load and the transport mechanisms. In this
particular case, the decay would occur according to the same rules for the dissolved
and sorbed phases and would not be able to alter the kinetics between the two
phases.

For profiles (4.1) and (4.3), the coefficients λ∗ and λ∗∗ are given by

λ∗ = λ
eαα

eα(α+Kdζ0)−Kdζ0

, λ∗∗ = λs
(eα − 1)ζ0K

m
d

eα(α+Kdζ0)−Kdζ0

. (4.11)
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Figure 5. Case of nonlinear decay. Behaviour of (dimensionless) coefficients λ∗ and λ∗∗ as a function
of the suspension number and bulk solid–water distribution ratio. α = 0.1, continuous line; α = 1,
dotted line; α = 0.1, dashed line.

Figure 5 reports their (dimensionless) behaviour as a function of the two key
parameters α and Kdζ0. The diagrams show how the weight of term Cn

0 is always less
than the weight that would occur in clear water and this difference grows with an
increase of the quantity of the chemical that is transported by the sediment and with
a decrease of the suspension number. The differences are large and can even be of
the order of 60%–70%. The opposite behaviour is shown by coefficient λ∗∗, which,
as expected, grows with an increase of the sorption partition coefficient and with a
decrease of α.

It is also interesting to analyse the relative weight of the two decay terms. Using
relationships (2.9) and assuming that, at the beginning of the whole transport process,
Cs0,t=0 = KdC0,t=0, one easily obtains

λ∗∗Cm
0

λ∗Cn
0

∼
(
C0,t=0

C0

)n−m
. (4.12)

As, during the evolution of the phenomenon, all the transport mechanisms lead to
a diminishing of the concentration, it follows that if n > m the term λ∗∗Cm

0 always
becomes more important, that is, the decay in the sorbed phase always plays a
more important role. The opposite occurs in the case in which m > n. This different
behaviour can easily be interpreted if the decay laws (2.7) and equation (2.11) that
describes the tendency to equilibrium between the dissolved and sorbed phases, are
taken into consideration. If n > m, the decay is stronger in the sorbed than in the
dissolved phase; therefore, as time passes (and concentration C0 diminishes), the
sorbed phase takes more and more chemical from the dissolved phase thus becoming
the main decay mechanism, justifying the predominance of term λ∗∗Cm

0 in the model.
It is therefore the degree of nonlinearity that determines which of the two decays in
the two phases is decisive for the evolution of C0.

Let us now study the evolution of a real cloud of pollutant in a stream to show an
example of a chemical pollution governed by models (3.42) and (4.10). Introducing
the moving frame (ξ, τ) = (x− uet, t) the models become

∂C0

∂τ
− D∗ ∂

2C0

∂ξ2
+ u∗

∂Cn
0

∂ξ
+ u∗∗

∂Cm
0

∂ξ

+λ∗Cn
0 + λ∗∗Cm

0 + λ′C2n−1
0 + λ′′′Cm+n−1

0 + λ′′C2m−1
0 = 0 (4.13)
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λ λs λ∗ λ∗∗
Case n m ((Kg m−3)1−n s−1) (s−1) ((Kg m−3)1−n s−1) (s−1)

LR 1 1 6.93× 10−6 6.93× 10−6 4.25× 10−6 2.68× 10−6

NR1 1 2 6.93× 10−6 3.60× 10−6 4.25× 10−6 1.39× 10−5

NR2 2 1 3.60× 10−5 6.93× 10−6 2.20× 10−5 2.68× 10−6

NR3 2 2 3.60× 10−5 3.60× 10−6 2.20× 10−5 1.39× 10−5

Table 1. Values of the parameters that characterize the decay process in the dissolved and sorbed
phases in the simulations.

and
∂C0

∂τ
− D∗ ∂

2C0

∂ξ2
+ λ∗Cn

0 + λ∗∗Cm
0 = 0. (4.14)

Let us suppose that, at time τ = 0, an input of unitary mass is released into the
stream and is spatially distributed according to a Gaussian concentration law

C0,τ=0(ξ) =
1√

4πD∗
exp

(
− ξ2

4D∗

)
. (4.15)

Let us follow the evolution of this cloud over a time interval Ts, during which
the concentration C0 could be considered equal to zero outside the spatial interval
[−ξs,+ξs]. The following initial and boundary conditions are associated with (4.13)
and (4.14):

C0(ξ, 0) = C0,τ=0(ξ), C0(−ξs, τ) = C0(ξs, τ) = 0. (4.16)

The above mathematical problems (4.13), (4.15), (4.16) and (4.14)–(4.16) were nu-
merically integrated using an interpolation-collocation method based on sinc functions
(Bellomo & Ridolfi 1995) that is particularly suitable for nonlinear models and to
simulate wave phenomena (Revelli & Ridolfi 2002). In the present problem, a spatial
discretization was used with 61 nodes and an adaptative time step varying from
0.5 s to 1500 s, and the system of ordinary differential equations that results from
the spatial discretization was integrated with the Adams predictor–corrector method
(Stoer & Bulirsch 1980). The numerical algorithm was tested for the case of linear
decay, where a very good agreement was found with the analytical solution.

Several cases were simulated and the results of four example simulations, corre-
sponding to the values of the parameters reported in table 1, are shown. The LR
case refers to linear reactive substances, while the last three simulations refer to
nonlinear reactive chemicals with different n/m and λs/λ ratios. All the simulations
were performed for α = 1, Kdζ0 = 1, εs = 7× 103 m and t1/2 = 105 s. The effective
mean velocity ue and the effective dispersion coefficient D∗ were equal to 0.23 m s−1

and 1.03 m2 s−1.
Figure 6(a, b) shows the longitudinal concentration profiles after τ∗ = 1 day, while

figures 7 and 8 compare the time evolution of the r.m.s. and the peak value, Cp. The
latter is normalized to the linear case, Cp,l , to highlight the role of the nonlinearities.
Some significant results clearly emerge. First, the strong influence of the nonlinear
decay can be observed: the differences from the linear case are quite remarkable and,
on increasing the nonlinearities in the decay, differences of up to 100% can be reached
in the central portion of the plume. As expected (from laws (2.7) and recalling that
C0 < 1), values of greater concentrations always correspond to the nonlinear cases.
Neglecting the nonlinearity in the decay always involves an approximation, to the
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Figure 6. Longitudinal profiles C0(ξ, τ∗), for the simulated cases (τ∗=1 day), according the complete
model (4.13) (a) and the approximate model (4.14) (b). m = n = 1, continuous line; n = 1, m = 2,
dotted line; n = 2, m = 1, dot-dashed line; m = n = 2, dashed line.

1000

800

600

400

200

0 1 2 3 4
τ (days)

r.m
.s

. (
m

)

Figure 7. Behaviour of the r.m.s. concentration distribution for the decay cases reported in table 1.
All four cases simulated with the approximated model (4.14) collapse on the continuous line, while
the dashed line refers to the complete model (4.13) in the two cases with n 6= m.

detriment of safety, and some tests have shown that the nonlinearities in the sorbed
phase have more effect than those of the dissolved phase. The effect of the nonlinear
terms that were neglected in the approximate model (4.10) can also be observed. These
terms contribute when the nonlinear exponents of the decay laws (2.7) differ from
each other: when n < m their influence determines a slowing down of the pollutant
wave and the origin of a negative asymmetry (see also figure 9). The opposite occurs if
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Figure 8. Behaviour of the peak value of the concentration Cp for the nonlinear decay cases
reported in table 1 (Cp,l refers to the linear case LR). n = 1, m = 2, continuous line; n = 2, m = 1,
dotted line; m = n = 2, dashed line.
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Figure 9. Evolution of the skewness, S , according to the complete model (4.13). (n = 1, m = 2),
continuous line; (n = 2, m = 1), dotted line.

n > m. Regardless of the sign of the difference (m−n), the neglected terms also involve
an increase of the r.m.s. concentration distribution (see the dashed line in figure 7);
if the r.m.s. is taken as an indication of the size of the plume, this would mean that
the use of approximate model (4.14) in place of (4.13) could be detrimental to safety.
Finally, kurtosis (not shown) also shows a very weak dependence on the neglected
nonlinear terms even though the tails of the distribution of the concentration are
never more than 3%± 5% different from those of the approximate model.

Apart from the effects on the r.m.s. and the asymmetry of the chemical plumes,
the higher-order terms neglected in model (4.10) can be important in the case of a
multi-species substance. In this case individual species may have different degrees of
reactivity and the terms in model (3.42) can play an important role in separating the
centroids of the concentration distributions of the species on the long time scale. An
example is shown in figure 10. It refers to two species A and B – with (n, m) equal
to (1, 2) and (2, 1) – that start with the same initial conditions. The figure describes
the temporal evolution of the distance, dAB , between the two centroids according
to the complete model (3.42). The importance of the higher-order effects is evident:
after about one day, the distance becomes similar to the size of the plumes. The
approximate model (4.10) would always erroneously give dAB = 0.
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Figure 10. Evolution of the distance, dAB , between the centroids of the concentration distributions
of two species with different degrees of reactivity (n = 2, m = 1 and n = 1, m = 2). The distance is
normalized to the mean, σm, of the r.m.s. of the two plumes.
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Figures 7 and 8 also allow one to assess the error that would occur when, instead
of using (4.14), the model

∂C0

∂τ
− D∗ ∂

2C0

∂ξ2
+ λCn

0 = 0, (4.17)

is used, that is the model that would result if only the decay of the dissolved phase
were also to be directly applied to concentration C0, neglecting the interaction between
the decay and sorption kinetics. As an example, let us consider the case where n = 2
and m = 1. In this case, and recalling that λ∗ + λ∗∗ → λ if m = n, model (4.17) would
give the same behaviour as that shown in figures 5 and 6 for the case where n = m = 2.
Errors would therefore result and similar errors would also be encountered in the
case of n = 1 and m = 2. This stresses the importance of the interaction between the
decay and kinetic sorptive exchange.

Figure 11 reports the time behaviour of the λ∗∗Cm
0 /λ

∗Cn
0 ratio for cases NR1 and

NR2. This figure confirms the previous discussion on (4.12), that is that the sign of
the difference between the exponents of the laws of decay (2.7) determines which
of the two decays will prevail in the evolution of C0. It can also be observed that,
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because of the rapid spreading of the chemicals, the prevalence (or not) of one term
over another has a very rapid trend that develops in the first stages of the transport
process.

5. Conclusions
The study of transport phenomena in an open channel flow is a fascinating subject.

One interesting aspect is that of the effects of suspended particles that can adsorb
chemical substances on the solute transport. The works by Ng (2000a, b) and Ng
& Yip (2001) have shown how the sorption–desorption kinetics that are established
between the dissolved and sorbed phases can influence the advection and dispersion
of the substance to a great extent. The present paper has also investigated the added
effect of decay, which often affects the fate of substances in real streams and is
very important in forecasting the evolution of pollutants. Decay has been considered
in both the linear and nonlinear cases and with different rates for the sorbed and
dissolved phases. The main result is the deduction of a one-dimensional differential
model that governs the evolution of the dissolved phase and which includes interaction
with the sorbed phase. The model shows how the influence of the suspended sediment
and decay alters all the transport mechanisms. In particular, even though the model
only considers the fate of the dissolved phase, there are decay terms that explicitly
depend on the decay in the sorbed phases. This means that the effective decay of the
depth-averaged concentration of the dissolved phase can be remarkably different from
the decay that would occur in the case of clear water. Some quantitative examples
have confirmed the importance of the interaction between the decay and suspended
sediment, which therefore should not be neglected in water quality models.

The authors would like to thank Luigi Butera, Marco Codegone and Sebastiano
Sordo for their encouragement and their useful suggestions. The assistance given by
the three anonymous reviewers is gratefully acknowledged.
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